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Summary
We describe two complementary COVID-19 models used at MIT in this docu-
ment:

• The MIT Situational Awareness (SA) system used to ingest live data
streams and to predict if short-term (hours) building occupancy, inflows,
and outflows remain at safe levels. Section 1 describes the design require-
ments and mathematical formalism behind the SA system.

• The COVID-19 Risk Model (RM) used for longer term (weeks) predic-
tion of building usage. Section 2 describes the design requirements and
mathematical formalism behind the RM system.

Note that many parts of these systems were designed around March 2020.
This was before information about vaccines, variants, etc. were known. A
sanitized version of the codebase for the RM and SA systems can be found
in our Github repository. For privacy and security reasons we have chosen to
not open source the complete code base that is used in the operational system.
For example, we have include synthetic data and removed code that handles
integration with MIT’s IT infrastructure.
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1 Situational Awareness
1.1 Overview
In contrast to the Risk Model system described in section 2, which we ran weekly
to simulate a number of policy actions in parallel, we run the situational aware-
ness (SA) system hourly. SA provides decision makers with hourly predictions
of building usage statistics, and alerts them of any buildings where occupancy
has reached a high thresholds of density.

1.2 Overarching assumptions of this system
1. We are not estimating health risk. Instead we estimate building density

(occupancy per usable square footage) which is used by decision makers as
a proxy for health risk (the denser a building is, the more likely infections
will spread). Similarly, we provide building inflow and outflow as a way
to minimize crowding at points of entry/exit.

2. We assume that building usage threshold alerts have been provided to
us based on decision makers’ assumptions of virus transmission and floor
plans.

3. Decision makers need high frequency estimates of future building usage in
order to assign building access, plan events, and generally control building
density levels.

4. Decision makers need high frequency estimates of past building usage in
order to verify and build intuition as to how their past decision impacted
building usage.

5. We expect that people will swipe into a different building that the one
they plan to go to. e.g. they will swipe into an entry building and walk
through several connected buildings to reach their office.

6. We expect that building usage will be different for different days depend-
ing on whether they are regular week days, weekends, holidays, institute
holidays, etc.

7. It is better to overestimate building usage than to underestimate it due
to the higher health cost of underestimation.

1.3 High-level design decisions
1. We assume that only people with active assignments (badge access) to

certain buildings are allowed into these buildings.

2. Our smallest unit of geographic estimation are buildings, not floors or
rooms.

4



3. We do not estimate past inflow into building and instead data as-is.

4. We assume that people only come into campus for one “trip”, i.e. there
are no repeated visits. Although this is not always correct (people leave
and come back), model checking has shown that modeling repeated visits
leads to huge overestimates.

5. We use anonymized data to estimate building usage duration (how long
somebody stays in a building) and building-to-building transition matri-
ces. We only include transitions that occur within a 15min window. We
do not retain a copy of the source data and it is regularly purged as per
data retention policies.

6. Given that computing duration and transition parameter distributions
takes a long time, we only compute it once a week.

7. We assume that using one month of past data is enough history to estimate
parameters over. Model checking shows that less time than 1 month leads
to high noise. Longer time history leads to missing campus important
calendar changes (e.g. holidays skew our estimates).

8. We expect that people stay overnight in their building and therefore model
overnight trajectories.

9. We inject building inflows, outflows and occupancy estimated from class
schedule on top of estimated values. The amount of this injection decreases
linearly as number of people on campus estimated from data increases.

1.4 Definitions
1.4.1 Time

Let time t be an hourly timestamp (e.g. 2020-04-01 19:00). It is not a random
variable. t0 is the time of the beginning of the simulation, which is, in imple-
mentation, 1 month earlier than the current hour where the simulation is being
run.

For estimating distributions, we operate over ‘hour of the week’ which is
the number of hours since Monday 12am. It reaches 167 (zero-indexed) on the
Sunday 11pm of that week. We define the function h ∈ {0, ..., 167} where h(t)
provides the mapping from a timestamp t to h. For example, 2020-04-01 19:00
maps to 67.

1.4.2 Building location

Building locations, l, are defined as the building name under investigation, e.g.
‘NW14’. It is not a random variable.

5



1.4.3 Occupancy, inflow and outflow

Our goal is to estimate the random variable occupancy O[t,t+1),l in a building l
during the interval [t, t+ 1).

Similarly I[t,t+1),l is the random variable inflow and X[t,t+1),l is the random
variable outflow.

1.5 Mathematical Derivation
1.5.1 Inflow model

We start with estimating inflow, which is the number of arrivals:

I[t,t+1),l ∼ I(θ(h(t), l)) (1)

The parameters θ(h(t)) of the distribution I are estimated using Maximum-
Likelihood Estimation (MLE). For example, we can use arrivals over the past
Tuesdays between 12-1pm to estimate a distribution of arrivals during hour 36.
In implementation, we estimate a Normal distribution’s mean µ[h(t),h(t)+1),l and
standard deviation σ[h(t),h(t)+1),l

For example, if I[t,t+1),NW14 = 5, where t = 2020-01-12 09:00, this means
there were 5 arrivals at this time.

We further define i[t,t+1),l ∈ [0, ..., I[t,t+1),l] to be a sequence of counters to be
used in sums in the next section. In the previous example where I[t,t+1),NW14 =
5, this leads us to i[t,t+1),NW14 ∈ [0, 1, 2, 3, 4].

In our implementation, I is more finely estimated, for example, based on
whether the day of the week was a holiday. For simplicity, we do not present
the full picture here.

1.5.2 Duration model

For each time t, for each building l, and for each arrival i[t,t+1),l (as different
people arriving at the same time might stay different amounts of time), we
define its duration:

Di[t,t+1),l,[t,t+1),l ∼ D(ζ(h(t), l) (2)

In our implementation, D is an empirical (categorical)x distribution with ζ
estimated using MLE from data.

We further define γ as the sequence of timestamps over which each arrival
i[t,t+1),l was present in a building l: γi[t,t+1),l,l ∈ [t, t+1, ..., t+Di[t,t+1),l,[t,t+1),l].
E.g. if somebody came in at 2020-10-12 09:00 and stayed for 3 hours, their
sequence would be [2020-10-12 09:00, 2020-10-12 10:00, 2020-10-12 11:00].
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1.5.3 Occupancy model

Given the above models and definitions,

O[k,k+1),l =

k∑
t=t0

∑
i[t,t+1),l

∑
γi[t,t+1),l,l

1(k ≤ γi[t,t+1),l,l < k + 1) (3)

where 1 is the binary indicator variable, k is a timestamp (similar to t) over
which occupancy is being evaluated.

As an intuitive explanation, the inner sum is summing occupancy for a par-
ticular time interval [k, k + 1) over which an arrival it is still in this building,
summed (middle sum) over all arrivals, summed (outermost sum) over all times-
tamps up to the beginning of the simulation (e.g. a person that came in at the
beginning of the simulation with a very large duration could still be in this
building).

One assumption of the above model is that a person coming into a building
only stays within this building. Our data shows that this is not always the case,
and therefore one needs to estimate transition between arrival buildings (where
people swipe in) and ‘occupancy’ buildings (where their occupancy should be
attributed). We do so using the stochastic transition function Ψ described next.

1.5.4 Transition model

The stochastic function T simulates transitions of people from the building b
they swipe into to their work building b′ they eventually end up in. Occupancy
is only assigned to b′, while inflow and outflow are assigned o both buildings, in
addition to the buildings in the walking path p (a vector of buildings) between
the two buildings. The stochastic function T is implemented as algorithm 1.

To use T , we need to define two new distributions. Using data, we estimate,
T, a distribution of transitions between buildings. Using T, given a timestamp
t and a starting building l, we can sample a transited building l′[t,t+1),l:

l′[t,t+1),l ∼ T(κ(h(t), l)) (4)

Similarly, we compute assignment distribution A which allows us to sam-
ple a building l′′[t,t+1),l that a person is assigned to given their swipe building.
Specifically, what we are trying to model here is based on the fact that, behind
the scenes, each person i is ‘assigned’ to the buildings they need to work in (e.g.
their office, labs, machine shops, etc.). However, they often need access to other
buildings to enter through (e.g. because their work building is not on a public
street, so they need to access it through corridors belonging to other buildings).

l′′[t,t+1),l ∼ A(ξ(h(t), l)) (5)

κ and ξ are estimated using MLE from data.
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Algorithm 1 Stochastic building-to-building transition function T
Input: Swipe (entry) building b, timestamp t, transition distribution T, as-
signment distribution A.
Output: Work building b′, walking path p.
Hyperparameters: Maximum number of attempted transitions NT , Maxi-
mum number of attempted assignments NA.
for assignment trial j = 0, . . ., NA do

current building: bcurrent = b
walking path: p = ∅
Sample work building: btrial[t,t+1),b ∼ A(ξ(h(t), b))
if btrial[t,t+1),b == b then

# end if sampled trial work building is your starting
building
return: btrial[t,t+1),b, p

for transition trial k = 0, . . ., NT do
sample transition building: btransition[t,t+1),bcurrent

∼ T(κ(h(t), bcurrent))
p := p

⋃
{btransition[t,t+1),bcurrent

}
if btransition[t,t+1),bcurrent

== btrial[t,t+1),b then
# end if sampled transition building is your trial work
building
return: btrial[t,t+1),b, p

else
bcurrent = btransition[t,t+1),bcurrent

# continues inner for loop
# return starting building if no work building was found
return: b, ∅

Based on the definitions in section 1.4 and the derivation in section 1.5, we
built an automated system that simulates hourly building occupancy and sends
alerts if any building’s usage is above a certain safety threshold.

The code and readme documents the implementation of this system.

1.6 Model and implementation checking
We implement a number of ways to check our implementation:

• Implementation check: we verify that the conservation of people is re-
spected during our simulation interval per building i.e. the total number
of people entering a building is the same as the total number of people
leaving.

• Model check: we implement a predictive check to compare simulated
past values to manually collected values. For example, we had people
stand outside all doors of buildings and count the number of people com-
ing in and out over a time-interval, and this value was compared to
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our simulated values as a predictive check. This is implemented in the
create_ground_truth_comparison function.
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2 COVID-19 Risk Model
2.1 Overview
In this section, we describe the COVID-19 Risk Model system (which is separate
from the Situational Awareness system described in section 1). The goal of this
model is to provide long term (weeks) prediction of building usage and risk
conditional on policy actions. We first define what we mean by “COVID-19
risk”, and then define various models in the pipeline.

2.2 System assumptions
Note that the following system assumptions were made in March 2020. This
was before information about vaccines, variants, etc. were known.

1. We will have not achieved herd immunity or have a vaccine for SARS-
CoV-2 until at least 2021.

2. Coordinated government guidance will need to be augmented by critical
decisions informed by local environmental considerations. In other words,
institutions like MIT will need to make many informed decisions to safe-
guard their populations.

3. We believe approaches such as contact tracing and exposure alerting apps
are important tools but these needs were being addressed by others. Fore-
casting risk well for a small, target population (e.g., MIT’s community) is
extremely hard and could prevent a great deal of harm.

4. Immunity and infection (i.e. person state transitions) will be treated as a
single date when that state transition takes place (in a binary fashion).

5. We will not be able to estimate everything perfectly. However, using
posterior predictive checks, we can estimate our prediction error.

2.3 High-level design decisions
1. The model will not attempt to combine different types of risk (e.g., health

and economic).

2. Our models, parameters, and data are going to be inaccurate. Therefore,
modeling uncertainty well is crucial.

3. We do not believe all the important benefits and harms can be quantified
or well-modeled, and believe the sort of health model provided here will
just be one of many factors that the institute’s administration will use to
make final policy decisions.

4. The model must be able to show the effect of interventions on different
population demographics.
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5. We think of risk as the harm (e.g., sickness, death, job loss, community
cohesion loss) to a population.

6. The distribution over harm is an important model output as we do not
assume we know the most appropriate statistic of the distribution useful
for making decisions (e.g., expected harm, 95-percentile harm).

7. While overall risk is composed of various subcategories of COVID-19 re-
lated risk (i.e.: health risk, economic risk, and social risk), here, we focus
only on health risk.

8. Inclusion of an individual’s mobility will allow us to model movement-
related interventions impact on SARS-CoV-2 prevalence.

9. The risk model will be composed of a handful of sub-models. We do not
assume we know the structure or parameters of the sub-models and allow
for a wide range of possible future sub-models to be used.

2.4 Definitions
2.4.1 Time

Define TV be a random variable representing the end date of our simulation. E.g.
this could be the immunity date at which we no longer need be concerned with
any additional COVID-19-related risk (e.g., either when a vaccine is available
and widely administered and/or herd immunity is achieved).

2.4.2 Individuals

Define i be a random variable representing an individual i drawn from some
population I. For example, I may be all residents of the greater Boston area or
all MIT employees or MIT undergraduates who attend class in building 32.

Define new-infection(i, t) to be a random indicator variable denoting if i
has become infected with SARS-CoV-2 on day t. Note new-infection(i, t) is
true for at most one value of t and false otherwise.

Define becomes-infected(i, t0, t1) to be a random indicator variable denot-
ing if i becomes infected with SARS-CoV-2 on day between t0 and t1.

Define demographics(i) to be the COVID-19 demographics of i.

2.4.3 Actions

Define aτ :TV to be the series of actions taken between days τ and TV . For
example, at ∈ [0, 100] could be the percentage of people we allow to return to
campus, or to a specific building.
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2.4.4 Health Risk

Define the possible health-related harms from COVID-19 as H = {sickness, hos-
pitalization, needing ICU care, death} and experience-harm(i, h) to a random
indicator variable representing individual, i, experiencing harm, h.

Define the risk to the population I from actions at0:t1 taken between days
t0 and t1 to be the set of distributions over the total harms experienced across
the population:

Rhealth(I, at0:t1) :=

{[
h, P

(∑
i∈I

experience-harm(i, h)
∣∣∣∣at0:t1

)]}
h∈H

(6)

=

{[
h,
∑
i∈I

P

(
experience-harm(i, h)

∣∣∣∣at0:t1)
]}

h∈H

(7)

Equation 7 is the output of the COVID-19 Risk model (as a distribution) that
we provide to decision makers in the form of summary statistics (e.g. median,
confidence intervals).

To calculate this health risk, we make a the independence assumptions below,
and then build different modules that use Monte-Carlo samples to estimate this
risk.

In actuality, we are less concerned with absolute health risk than we are
with additional health risk resulting from taking a set of actions. So we define
a set of baseline actions (e.g., no-ops) abaselineτ :∞ and compute the relative risk in
taking actions ãτ :∞:

∆Rhealth(I, ãτ :∞, abaselineτ :∞ ) :=Rhealth(I, ãτ :∞)−Rhealth(I, a
baseline
τ :∞ )

=

{[
h,
∑
i∈I

P

(
experience-harm(i, h)

∣∣∣∣ãτ :∞)− P

(
experience-harm(i, h)

∣∣∣∣abaselineτ :∞

)]}
h∈H

(8)

2.5 Mathematical Derivation
In order to estimate the population risk, we first derive an approximation (given
independence conditions) of equation 7.

2.5.1 Health risk model for individual i

The probability of harm h to an individual i when actions aτ :∞ are taken starting
on day τ is:

P (experience-harm(i, h)|aτ :∞) (9)
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As per the law of total probability,

=
∑
TV

P (experience-harm(i, h), TV |aτ :TV ) (10)

Based on the definition of conditional probability,

=
∑
TV

P (TV )P (experience-harm(i, h)|TV , aτ :TV ) (11)

Because no harm is experienced without infection,

=
∑
TV

P (TV )P (experience-harm(i, h), becomes-infected(i, τ, TV ) = True|TV , aτ :TV )

(12)

Again, based on the definition of conditional probability,

=
∑
TV

P (TV )P (experience-harm(i, h)|becomes-infected(i, τ, TV ) = True)×

P (becomes-infected(i, τ, TV ) = True|TV , aτ :TV )

(13)

Because you can only be infected once (this assumption was pre-multi variants),
becomes-infected is the result of past new-infection,

=
∑
TV

P (TV )P (experience-harm(i, h)|becomes-infected(i, τ, TV ) = True)×

TV∑
t=τ

P (new-infection(i, t) = True|aτ :t)

(14)

Now we can introduce mobility as:

P (new-infection(i, t) = True|aτ :t) (15)

By the law of total probability,

=
∑

mobility(i,t,aτ:t)

P (new-infection(i, t) = True, mobility(i, t, aτ :t)|aτ :t) (16)

Based on the definition of conditional probability,

=
∑

mobility(i,t,aτ:t)

P (mobility(i, t, aτ :t)|aτ :t)P (new-infection(i, t) = True|mobility(i, t, aτ :t), aτ :t)

(17)
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Assuming that action aτ :t) affects new infection only via mobility i.e. mobility
is a sufficient statistic of action,

=
∑

mobility(i,t,aτ:t)

P (mobility(i, t, aτ :t)|aτ :t)P (new-infection(i, t) = True|mobility(i, t, aτ :t))

(18)

2.5.2 Mobility and Infection Models

Let us assume that infection, P (new-infection(i, t) = True|mobility(i, t, aτ :t))),
is a function of three statistics:

1. interactions(i, t, aτ :t): the number of person-to-person interactions i has
on day t

2. shared-space(i, t, aτ :t): the number of people who shared the same phys-
ical space as i on day t, albeit at different times

3. prevalence(i, t): the prevalence of SARS-CoV-2 on day t in the local
population i interacts or shares space with (for now, let’s interpret that
to mean the prevalence in the zip codes i inhabits)

If we assume these two effects contribute independently, we get:

P (mobility(i, t, aτ :t)|i, aτ :t) = P (interactions(i, t, aτ :t), shared-space(i, t, aτ :t)|i, aτ :t)

Assuming conditional independence,

= P (interactions(i, t, aτ :t)|i, aτ :t)P (shared-space(i, t, aτ :t)|i, aτ :t) (19)

To compute these, it’s useful to decompose them into when during a day
these interactions and shared spaces happen:

1. i’s commute to campus

2. i’s walk across campus to their building

3. inside of the building which i works

4. during i’s non-work activities work around campus

During each of these times we can create separate models of interactions and
shared spaces. Historical summaries of location occupancy provide a reasonable
worst case model (e.g., people during a pandemic are more likely to avoid peo-
ple than prior to a pandemic, so historical data is likely to overestimate these
quantities).

Also note interactions and shared-space are the first effect we will see
from many of the actions we take.
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The second part of equation 18 requires us to estimate:

P (new-infection(i, t) = True|mobility(i, t, aτ :t))

By the law of total probability,

=
∑

prevalence(i,t)

P (new-infection(i, t) = True, prevalence(i, t)|mobility(i, t, aτ :t))

(20)

By the definition of conditional probability,

=
∑

prevalence(i,t)

P (new-infection(i, t) = True|prevalence(i, t), mobility(i, t, aτ :t))×

P (prevalence(i, t)|mobility(i, t, aτ :t))
(21)

Assuming that the prevalence (at the region level, e.g. zipcode) does not
depend significantly on mobility of a single individual i,

=
∑

prevalence(i,t)

P (new-infection(i, t) = True|prevalence(i, t), mobility(i, t, aτ :t))×

P (prevalence(i, t))
(22)

Substituting equation 19 regarding the independence of mobility components:

=
∑

prevalence(i,t)

[
P (new-infection(i, t) = True|prevalence(i, t), interactions(i, t, aτ :t))

+P (new-infection(i, t) = True|prevalence(i, t), shared-space(i, t, aτ :t))
]
×

P (prevalence(i, t))
(23)

2.5.3 Independence assumptions

As a brief summary, these are the independence assumptions assumed for the
above derivations:

1. experience-harm(i, h)|at0:t1 ⊥⊥ experience-harm(j, h)|at0:t1 , for i ̸= j

2. TV ⊥⊥ aτ :TV

3. experience-harm(i, h)|becomes-infected(i, τ, TV ) ⊥⊥ TV , aτ :TV

4. new-infection(i, t)|mobility(i, t, aτ :t) ⊥⊥ aτ :t

5. prevalence(i, t) ⊥⊥ mobility(i, t, aτ :t)

6. new-infection(i, t)|prevalence(i, t), interactions(i, t, aτ :t) ⊥⊥
new-infection(i, t)|prevalence(i, t), shared-space(i, t, aτ :t))
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2.5.4 Estimating the models we’ll need

There are eight total sub-models that we’ll need to compute P (experience-harm(i, h)|i, aτ :∞):

1. P (experience-harm(i, h)|becomes-infected(i, t0, t1) = True, demographics(i))

2. P (prevalence(region(i), t)|gov-actions(region(i), t))

3. P (new-infection(i, t) = True|prevalence(i, t), interactions(i, t, aτ :t))

4. P (new-infection(i, t) = True|prevalence(i, t), shared-space(i, t, aτ :t))

5. P (interactions(i, t, aτ :t)|i, aτ :t)

6. P (shared-space(i, t, aτ :t)|i, aτ :t)

7. P (I), distribution of demographic of individuals.

8. P (gov-actions(region(i), t))

2.6 System structure
Given the previous derivation, we built a system with models approximated
using a sampling approach.

A variety of considerations prevent us from releasing the system in current
daily use, including privacy and safety considerations and infeasibility of sep-
arating model code from campus infrastructure. Here, instead, we present a
simplified structure that has been sanitized for public release, as it may benefit
others implementing future similar systems.

As represented in figure 1, each model is a block and generates probability
samples which are ingested by the next model, with the end goal of producing
health risk samples which approximate the population risk.

Figure 1: The MCRS Model Structure
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This is one of many possible approaches to model health risk. Here, we detail
our particular model definitions and sampling methods. However, one could
easily create a new type of model, e.g. a ‘vaccination’ model that simulates
vaccination campaigns and its effect or the other models.

As a brief summary, this system models the flow of people (each defined
as a person sample with demographic, building assignments, and commuting
attributes) walking through buildings (trajectory samples of people transit-
ing between buildings each hour as a stochastic function of building openings,
themselves samples of the action model), getting infected (infection samples
are a stochastic function of local COVID-19 prevalence samples per zipcode,
number of contacts based on trajectory samples, infection susceptibility based
on person demographics) and the progress of these infections into healthharm
samples.

Please see the code for details about implementation.

2.7 Managing Uncertainty
There are four main types of uncertainty we have to cope with:

1. Inherent randomness (e.g., the model is probabilistic)

2. Uncertainty due to approximate inference (from using a sampling method)

3. Uncertainty due to incorrect parameters

4. Uncertainty due to incorrect model structure

2.7.1 Inherent randomness

Inherent randomness is something we wish to display explicitly to the user. To
compute this, we use a bootstrap estimate of the distribution over the statistic
of interest.

For an example of the bootstrap estimation procedure, if we want to show
the distribution over the total number of deaths for ages 10-20 and 1,000 runs of
MC simulations, we would sample, with replacement, 1,000 runs from our actual
samples and compute the total number of deaths for ages 10-20. After repeating
this process between 100 and 10,000 times we will obtain the distribution over
total deaths for ages 10-20.

2.7.2 Uncertainty due to approximate inference

We can easily quantify and remedy uncertainty due to approximate inference
by running a variety of sample sizes, computing their error bars, and increasing
or decreasing the sample size to achieve the desired level of error.
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https://github.com/mit-quest/COVID19-campus-modeling/tree/main/scheduler


2.7.3 Uncertainty due to incorrect parameters and model structure

We provide the observations_and_model_distributions analysis module in
our code which allows for comparison between simulated variables (building
occupancy predictions) communicated to decision makers and observed values.
This allows for model validation and improvement in terms of the parameters
and model structure used.
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https://github.com/mit-quest/COVID19-campus-modeling/blob/main/analyses/observations_and_model_distributions/observations_and_model_distributions.py
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